小学五年级奥数题及答案

 

在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。

 

例1:计算:9.996+29.98+169.9+3999.5

 

解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。当然要记住,“凑整”时增加了多少要减回去。

 

9.996+29.98+169.9+3999.5

 

=10+30+170+4000-(0.004+0.02+0.1+0.5)

 

=4210-0.624

 

=4209.376

 

例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

 

解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。

 

由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。

 

1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

 

=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)

 

=0.04×25

 

=1

 

如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:

 

1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01

 

=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)

 

=1

 

例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20

 

解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。

 

0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20

 

=(0.1+0.9)×9÷2+(0.10+0.20)×11÷2

 

=4.5+1.65

 

=6.15

 

例4:计算:9.9×9.9+1.99

 

解:算式中的9.9×9.9两个因数中一个因数扩大10倍,另一个因数缩小10倍,积不变,即这个乘法可变为99×0.99;1.99可以分成0.99+1的和,这样变化以后,计算比较简便。

 

9.9×9.9+1.99

 

=99×0.99+0.99+1

 

=(99+1)×0.99+1

 

=100

 

例5:计算:2.437×36.54+243.7×0.6346

 

解:虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的2.437和后一个乘法的243.7两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了。

 

2.437×36.54+243.7×0.6346

 

=2.437×36.54+2.437×63.46

 

=2.437×(36.54+63.46)

 

=243.7

 

*例6:计算:1.1×1.2×1.3×1.4×1.5

 

解:算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果。

 

平时注意积累计算经验的同学也许会注意到7、11和13这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如578×1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数。

 

1.1×1.2×1.3×1.4×1.5

 

=1.1×1.3×0.7×2×1.2×1.5

 

=1.001×3.6

 

=3.6036

 

计算下列各题并写出简算过程:

 

1.5.467+3.814+7.533+4.186

 

2.6.25×1.25×6.4

 

3.3.997+19.96+1.9998+199.7

 

4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99

 

5.199.9×19.98-199.8×19.97

 

6.23.75×3.987+6.013×92.07+6.832×39.87

 

*7.20042005×20052004-20042004×20052005

 

*8.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)

 

计算下列各题并写出简算过程:

 

1.6.734-1.536+3.266-4.464

 

2.0.8÷0.125

 

3.89.1+90.3+88.6+92.1+88.9+90.8

 

4.4.83×0.59+0.41×1.59-0.324×5.9

 

5.37.5×21.5×0.112+35.5×12.5×0.112

 

五年级下册数奥试题

 

姓名            班级             得分

用简便方法计算下面各题。

20.36-7.98-5.02-4.36                    117.8÷2.3-4.88÷023

 

9.56×4.18-7.34×4.18-0.26×4.18

 

1、有123名小朋友,把他们分成12人一组或7人一组,恰好分完,而无剩余。又知总的组数在15组左右。那么,12人的多少组?7人的有多少组?

 

2、张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?

 

3、父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。问父亲现年多少岁?

 

4、加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?

 

5、一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?

 

6、将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?

 

7、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条大鱼重多少千克?

 

8、体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。那么买一个足球、一个篮球各付多少元?

 

9、有5元的和10元的人民币共14张,共100元。问5元币和10元币各多少张?

 

10、某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。如果上下山速度不变,从B村沿原路返回A村,要用多少时间?

 

11、甲、乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。甲离出发点62.4千米处与乙相遇。AB两地相距多少千米?

 

12、乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。问兔子还需要多少长时间才能追上乌龟?

 

13、在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。两人跑一圈各要几分钟?

 

14、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?

 

15、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?

 

16、一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?

 

17、有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各

包含与排除

1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?

 

解:两个小组共有(15+18)-10=23(人),

 

都不参加的有40-23=17(人)

 

答:有17人两个小组都不参加。

 

2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?

解:45-29-10+3=9(人)

答:语文成绩得满分的有9人。

 

3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?

解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。

4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。

面向老师的人数=50-12=38(人)

答:现在面向老师的同学还有38名。

 

4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?

解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。

领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33

共需要68+51+80+33=232(支)

答:游艺会为该项活动准备的奖品铅笔共有232支。

 

5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?

解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个

4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。

剪89次,变成89+1=90段

答:绳子共被剪成了90段。

 

6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?

解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25

所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)

答:其他年级的画共有3幅。

 

7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么,这些卡片一共有多少张?

解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)

答:这些卡片一共有36张。

8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?

解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。

1000-314=686

答:既不能被5除尽,又不能被7除尽的数有686个。

 

9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。

解:25+35+27-(8+12+9)+4=62(人)

答:这个班的学生人数是62人。

 

—  —

10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。

解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2

阴影部分面积=73-(6+8+5)+2*2=58

答:阴影部分的面积是58。

 

________________________________________

—  作者:abc

—  发布时间:2004-12-12 15:45:02

 

11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。

解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21

答:参加文艺小组的人数是21人。

________________________________________

—  作者:abc

—  发布时间:2004-12-12 15:45:43

 

12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?

解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。

三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)

答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。

________________________________________

—  作者:abc

—  发布时间:2004-12-12 15:46:53

 

13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?

 

解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点

 

答:在这个五角星上红色点最少有9960个。

 

此主题相关图片如下:

 

________________________________________

—  作者:abc

—  发布时间:2004-12-12 15:47:12

 

14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?

解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)

答:3人都浇过的花最少有4盆。

________________________________________

—  作者:abc

—  发布时间:2004-12-12 15:52:54

 

15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?

解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。

答:甲、乙、丙3人共同读过的故事最少有12个。

________________________________________

—  作者:abc

—  发布时间:2004-12-12 15:53:43

 

15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?

解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。

答:甲、乙、丙3人共同读过的故事最少有12个。

________________________________________

—  作者:cxcbz

—  发布时间:2004-12-13 21:53:23

 

以下是引用abc在2004-12-12 15:42:17的发言:

8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?

 

解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。

 

1000-314=686

 

答:既不能被5除尽,又不能被7除尽的数有686个。

 

题中的除尽应该是整除吧.

________________________________________

—  作者:cxcbz

—  发布时间:2004-12-13 21:56:00

 

以下是引用abc在2004-12-12 15:45:02的发言:

11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。

 

解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21

 

答:参加文艺小组的人数是21人。

  1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《

少年文摘》或《学与玩》的有多少人?

  1. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少

人?

  1. 1至100的自然数中:

(1)是2的倍数又是3的倍数的数有多少个?

(2)是2的倍数或是3的倍数的数有多少个?

(3)是2的倍数但不是3的倍数的数有多少个?

  1. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功

课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?

  1. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
  2. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个

班两队都参加的有多少人?

【试题答案】

  1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《少年文摘》

或《学与玩》的有多少人?

19 + 24—13 = 30(人)

答:订阅《少年文摘》或《学与玩》的有30人。

  1. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少

人?

只学钢琴人数:58—37 = 21(人)

只学画画人数:43—37 = 6(人)

  1. 1至100的自然数中:

(1)是2的倍数又是3的倍数的数有多少个?

既是3的倍数又是2的倍数,一定是6的倍数

100÷6 = 16……4

所以,既是2的倍数又是3的倍数有16个

(2)是2的倍数或是3的倍数的数有多少个?

100÷2 = 50,100÷3 = 33……1

50 + 33—16 = 67(个)

所以,是2的倍数或是3的倍数的数有67个。

(3)是2的倍数但不是3的倍数的数有多少个?

50—16 = 34(个)

答:是2的倍数但不是3的倍数的数有34个。

  1. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功

课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?

12 + 10—3 + 26 = 45(人)

答:这个班共有学生45人。

  1. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?

50—(30 + 21—8)= 7(人)

答:两样都不会的有7人。

  1. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个

班两队都参加的有多少人?

30 + 25—42 = 13(人)

答:这个班两队都参加的有13人。

某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?

分析与解 如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.

 

由容斥原理有

Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3

即y=20+20+20-7-8-9+x+3=39+x。

以下我们考察如何求y的最大值与最小值。

由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故x≥0,故0≤x≤7。

当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。

答:这个班最多有46人,最少有39人。

题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?

 

题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?

 

题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?

 

题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?

 

题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?

 

题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?

 

题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?

 

题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?

1.解:设有1元的x张,1角的(28-x)张

x+0.1(28-x)=5.5

0.9x=2.7

x=3

28-x=25

答:有一元的3张,一角的25张。

 

2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)

x+2(x-2)+5(52-2x)=116

x+2x-4+260-10x=116

7x=140

x=20

x-2=18

52-2x=12

答:1元的有20张,2元18张,5元12张。

 

3.解:设有7元和5元各x张,3元的(400-2x)张

7x+5x+3(400-2x)=1920

12x+1200-6x=1920

6x=720

x=120

400-2x=160

答:有3元的160张,7元、5元各120张。

 

4.解:货物总数:(3024-2520)÷2=252(箱)

设有大汽车x辆,小汽车(18-x)辆

18x+12(18-x)=252

18x+216-12x=252

6x=36

x=6

18-x=12

答:有大汽车6辆,小汽车12辆。

 

5.解:天数=112÷14=8天

设有x天是雨天

20(8-x)+12x=112

160-20x+12x=112

8x=48

x=6

答:有6天是雨天。

 

6.解:西瓜数:(290-250)÷0.05=800千克

设有大西瓜x千克

0.4x+0.3(800-x)=290

0.4x+240-0.3x=290

0.1x=50

x=500

答:有大西瓜500千克。

 

7.解:甲得分:(152+16)÷2=84分

乙:152-84=68分

设甲中x次

10x-6(10-x)=84

10x-60+6x=84

16x=144

x=9

设乙中y次

10y-6(10-y)=68

16y=128

y=8

答:甲中9次,乙8次。

 

8.解:设他答对x道题

5x-2(20-x)=86

5x-40+2x=86

7x=126

x=18

答:他答对了18题。

发表评论

提供最优质的资源集合

立即查看